Page last updated: 2024-11-12

(2S)-4-methyl-2-[[[5-[[5-[[(2-methylpropan-2-yl)oxy-oxomethyl]amino]pentylamino]-oxomethyl]-1H-imidazol-4-yl]-oxomethyl]amino]pentanoic acid tert-butyl ester

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID16196552
CHEMBL ID1421903
CHEBI ID109309

Synonyms (9)

Synonym
smr000394092
ilp-ii-35
MLS000834677
CHEBI:109309
HMS2214N18
CHEMBL1421903
Q27188392
(2s)-4-methyl-2-[[[5-[[5-[[(2-methylpropan-2-yl)oxy-oxomethyl]amino]pentylamino]-oxomethyl]-1h-imidazol-4-yl]-oxomethyl]amino]pentanoic acid tert-butyl ester
tert-butyl (2s)-4-methyl-2-[[5-[5-[(2-methylpropan-2-yl)oxycarbonylamino]pentylcarbamoyl]-1h-imidazole-4-carbonyl]amino]pentanoate
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (2)

ClassDescription
leucine derivativeAn amino acid derivative resulting from reaction of leucine at the amino group or the carboxy group, or from the replacement of any hydrogen of leucine by a heteroatom. The definition normally excludes peptides containing leucine residues.
tert-butyl esterA carboxylic ester resulting from the formal condensation of a carboxylic acid with tert-butanol.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (22)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Beta-lactamaseEscherichia coli K-12Potency19.95260.044717.8581100.0000AID485341
Chain A, Putative fructose-1,6-bisphosphate aldolaseGiardia intestinalisPotency17.74070.140911.194039.8107AID2451
glp-1 receptor, partialHomo sapiens (human)Potency10.00000.01846.806014.1254AID624417
phosphopantetheinyl transferaseBacillus subtilisPotency70.79460.141337.9142100.0000AID1490
ATAD5 protein, partialHomo sapiens (human)Potency20.58780.004110.890331.5287AID504467
USP1 protein, partialHomo sapiens (human)Potency5.01190.031637.5844354.8130AID743255
TDP1 proteinHomo sapiens (human)Potency20.73290.000811.382244.6684AID686978; AID686979
Microtubule-associated protein tauHomo sapiens (human)Potency17.75320.180013.557439.8107AID1460; AID1468
Smad3Homo sapiens (human)Potency35.48130.00527.809829.0929AID588855
apical membrane antigen 1, AMA1Plasmodium falciparum 3D7Potency14.12540.707912.194339.8107AID720542
67.9K proteinVaccinia virusPotency28.18380.00018.4406100.0000AID720580
glucocerebrosidaseHomo sapiens (human)Potency35.48130.01268.156944.6684AID2101
alpha-galactosidaseHomo sapiens (human)Potency28.18384.466818.391635.4813AID1467
IDH1Homo sapiens (human)Potency29.09290.005210.865235.4813AID686970
chromobox protein homolog 1Homo sapiens (human)Potency100.00000.006026.168889.1251AID540317
nuclear factor erythroid 2-related factor 2 isoform 2Homo sapiens (human)Potency29.09290.00419.984825.9290AID504444
tumor susceptibility gene 101 proteinHomo sapiens (human)Potency39.81070.129810.833132.6090AID493005
nuclear receptor ROR-gamma isoform 1Mus musculus (house mouse)Potency5.12090.00798.23321,122.0200AID2546; AID2551
gemininHomo sapiens (human)Potency23.10930.004611.374133.4983AID624297
neuropeptide S receptor isoform AHomo sapiens (human)Potency10.00000.015812.3113615.5000AID1461
Guanine nucleotide-binding protein GHomo sapiens (human)Potency5.01191.995325.532750.1187AID624287
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
calpain II, partialSus scrofa (pig)IC50 (µMol)26.61891.77424.93387.7087AID1420
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (5)

Processvia Protein(s)Taxonomy
negative regulation of inflammatory response to antigenic stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
renal water homeostasisGuanine nucleotide-binding protein GHomo sapiens (human)
G protein-coupled receptor signaling pathwayGuanine nucleotide-binding protein GHomo sapiens (human)
regulation of insulin secretionGuanine nucleotide-binding protein GHomo sapiens (human)
cellular response to glucagon stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (2)

Processvia Protein(s)Taxonomy
G protein activityGuanine nucleotide-binding protein GHomo sapiens (human)
adenylate cyclase activator activityGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (1)

Processvia Protein(s)Taxonomy
plasma membraneGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1745845Primary qHTS for Inhibitors of ATXN expression
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]